Identities via Bell matrix and Fibonacci matrix
نویسندگان
چکیده
منابع مشابه
Identities via Bell matrix and Fibonacci matrix
In this paper, we study the relations between the Bell matrix and the Fibonacci matrix, which provide a unified approach to some lower triangular matrices, such as the Stirling matrices of both kinds, the Lah matrix, and the generalized Pascal matrix. To make the results more general, the discussion is also extended to the generalized Fibonacci numbers and the corresponding matrix. Moreover, ba...
متن کاملSome Identities for Fibonacci and Incomplete Fibonacci p-Numbers via the Symmetric Matrix Method
We obtain some new formulas for the Fibonacci and Lucas p-numbers, by using the symmetric infinite matrix method. We also give some results for the Fibonacci and Lucas p-numbers by means of the binomial inverse pairing.
متن کاملThe Generalized Pascal Matrix via the Generalized Fibonacci Matrix and the Generalized Pell Matrix
In [4], the authors studied the Pascal matrix and the Stirling matrices of the first kind and the second kind via the Fibonacci matrix. In this paper, we consider generalizations of Pascal matrix, Fibonacci matrix and Pell matrix. And, by using Riordan method, we have factorizations of them. We, also, consider some combinatorial identities.
متن کاملFibonacci and Lucas Sums by Matrix Methods
The Fibonacci sequence {Fn} is defined by the recurrence relation Fn = Fn−1+ Fn−2, for n ≥ 2 with F0 = 0 and F1 = 1. The Lucas sequence {Ln} , considered as a companion to Fibonacci sequence, is defined recursively by Ln = Ln−1 + Ln−2, for n ≥ 2 with L0 = 2 and L1 = 1. It is well known that F−n = (−1)Fn and L−n = (−1)Ln, for every n ∈ Z. For more detailed information see [9],[10]. This paper pr...
متن کاملCompositions and Fibonacci Identities
We study formulas for Fibonacci numbers as sums over compositions. The Fibonacci number Fn+1 is the number of compositions of n with parts 1 and 2. Compositions with parts 1 and 2 form a free monoid under concatenation, and our formulas arise from free submonoids of this free monoid.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2008
ISSN: 0166-218X
DOI: 10.1016/j.dam.2007.10.025